【SMM Analysis:Types of Manganese Ores.】

Published: Nov 2, 2024 15:27
Source: SMM
【SMM Analysis:Types of Manganese Ores.】Types of Manganese Ores There are over 150 known manganese minerals in nature, classified into oxides, carbonates, silicates, sulphides, borates, tungstates, phosphates, etc. However, minerals with high manganese content are few. Here are descriptions of several common manganese minerals. (1) Pyrolusite: Tetragonal system, crystals are fine columnar or needle-like, usually in lump or powdery aggregates. Both color and streak are black. Luster and hardness vary with the coarseness and form of the crystals; well-crystallized ones have a submetallic luster and higher hardness, while cryptocrystalline lumps and powdery forms have a dull luster and low hardness, easily soiling hands. Specific gravity is around 5. Pyrolusite is mainly formed by sedimentation and is one of the main components of sedimentary manganese ore. In the oxidation zone of manganese deposits, all primary low-valence manganese minerals can also oxidize into pyrolusite. Pyrolusite is a very common mineral in manganese ore and an important raw material for manganese smelting. (2) Manganite: Monoclinic system, crystals are rare, usually in botryoidal, reniform, and grape-like aggregates, also in dense lumps and dendritic forms. Both color and streak are black. Submetallic luster. Hardness 4-6, specific gravity 4.4-4.7. Manganite is mainly of exogenous origin, found in the oxidation zone of manganese deposits and sedimentary manganese deposits, and is also a very common manganese mineral in manganese ore, an important raw material for manganese smelting. (3) Manganese Wad: Monoclinic system, crystals are columnar with longitudinal striations. Often found in crystal clusters in the druses of some manganese-bearing hydrothermal veins, in sedimentary manganese deposits mostly as cryptocrystalline lumps, or in oolitic, botryoidal aggregates, etc. Mineral color is black, streak is brown. Submetallic luster. Hardness 3-4, specific gravity 4.2-4.3. Manganese Wad is found in both endogenetic hydrothermal deposits and exogenetic sedimentary manganese deposits, an important raw material for manganese smelting. (4) Hausmannite: Tetragonal system, crystals are tetragonal bipyramids, usually in granular aggregates. Color is black, streak is brown-orange or reddish-brown. Submetallic luster. Hardness 5.5, specific gravity 4.84. Hausmannite is formed by endogenetic or metamorphic processes, found in some contact metasomatic deposits, hydrothermal deposits, and sedimentary metamorphic manganese deposits, coexisting with braunite, and is also an important raw material for manganese smelting. (5) Braunite: Tetragonal system, crystals are bipyramidal, also found in granular and lump aggregates. Mineral is black, streak is brown-black. Submetallic luster. Hardness 6, specific gravity 4.7-5. Other characteristics are the same as Hausmannite. (6) Rhodochrosite: Trigonal system, crystals are rhombohedral, usually in granular, lump, or nodule forms. Mineral is rose-colored, easily oxidized to brown-black. Vitreous luster. Hardness 3.5-4.5, specific gravity 3.6-3.7. Rhodochrosite formed by endogenetic processes is common in some hydrothermal deposits and contact metasomatic deposits; exogenetic rhodochrosite is widely distributed in sedimentary manganese deposits. Rhodochrosite is an important raw material for manganese smelting. (7) Alabandite: Isometric system, common forms include cubes, octahedrons, and rhombic dodecahedrons, aggregates are granular or lump. Color is steel-gray to iron-black, turning brown upon weathering, streak is dark green. Submetallic luster. Hardness 3.5-4, specific gravity 3.9-4.1. Alabandite is abundant in sedimentary metamorphic manganese deposits, an important raw material for manganese smelting.

There are over 150 known manganese minerals in nature, classified into oxides, carbonates, silicates, sulphides, borates, tungstates, phosphates, etc. However, minerals with high manganese content are few. Here are descriptions of several common manganese minerals.


(1) Pyrolusite: Tetragonal system, crystals are fine columnar or needle-like, usually in lump or powdery aggregates. Both color and streak are black. Luster and hardness vary with the coarseness and form of the crystals; well-crystallized ones have a submetallic luster and higher hardness, while cryptocrystalline lumps and powdery forms have a dull luster and low hardness, easily soiling hands. Specific gravity is around 5. Pyrolusite is mainly formed by sedimentation and is one of the main components of sedimentary manganese ore. In the oxidation zone of manganese deposits, all primary low-valence manganese minerals can also oxidize into pyrolusite. Pyrolusite is a very common mineral in manganese ore and an important raw material for manganese smelting.


(2) Manganite: Monoclinic system, crystals are rare, usually in botryoidal, reniform, and grape-like aggregates, also in dense lumps and dendritic forms. Both color and streak are black. Submetallic luster. Hardness 4-6, specific gravity 4.4-4.7. Manganite is mainly of exogenous origin, found in the oxidation zone of manganese deposits and sedimentary manganese deposits, and is also a very common manganese mineral in manganese ore, an important raw material for manganese smelting.


(3) Manganese Wad: Monoclinic system, crystals are columnar with longitudinal striations. Often found in crystal clusters in the druses of some manganese-bearing hydrothermal veins, in sedimentary manganese deposits mostly as cryptocrystalline lumps, or in oolitic, botryoidal aggregates, etc. Mineral color is black, streak is brown. Submetallic luster. Hardness 3-4, specific gravity 4.2-4.3. Manganese Wad is found in both endogenetic hydrothermal deposits and exogenetic sedimentary manganese deposits, an important raw material for manganese smelting.


(4) Hausmannite: Tetragonal system, crystals are tetragonal bipyramids, usually in granular aggregates. Color is black, streak is brown-orange or reddish-brown. Submetallic luster. Hardness 5.5, specific gravity 4.84. Hausmannite is formed by endogenetic or metamorphic processes, found in some contact metasomatic deposits, hydrothermal deposits, and sedimentary metamorphic manganese deposits, coexisting with braunite, and is also an important raw material for manganese smelting.


(5) Braunite: Tetragonal system, crystals are bipyramidal, also found in granular and lump aggregates. Mineral is black, streak is brown-black. Submetallic luster. Hardness 6, specific gravity 4.7-5. Other characteristics are the same as Hausmannite.


(6) Rhodochrosite: Trigonal system, crystals are rhombohedral, usually in granular, lump, or nodule forms. Mineral is rose-colored, easily oxidized to brown-black. Vitreous luster. Hardness 3.5-4.5, specific gravity 3.6-3.7. Rhodochrosite formed by endogenetic processes is common in some hydrothermal deposits and contact metasomatic deposits; exogenetic rhodochrosite is widely distributed in sedimentary manganese deposits. Rhodochrosite is an important raw material for manganese smelting.


(7) Alabandite: Isometric system, common forms include cubes, octahedrons, and rhombic dodecahedrons, aggregates are granular or lump. Color is steel-gray to iron-black, turning brown upon weathering, streak is dark green. Submetallic luster. Hardness 3.5-4, specific gravity 3.9-4.1. Alabandite is abundant in sedimentary metamorphic manganese deposits, an important raw material for manganese smelting.

Data Source Statement: Except for publicly available information, all other data are processed by SMM based on publicly available information, market communication, and relying on SMM‘s internal database model. They are for reference only and do not constitute decision-making recommendations.

For any inquiries or to learn more information, please contact: lemonzhao@smm.cn
For more information on how to access our research reports, please contact:service.en@smm.cn
Related News
Silicon Metal Market Review for January and Outlook for February
18 hours ago
Silicon Metal Market Review for January and Outlook for February
Read More
Silicon Metal Market Review for January and Outlook for February
Silicon Metal Market Review for January and Outlook for February
In January, the silicon metal market experienced a relatively loose supply-demand balance, with a theoretical inventory buildup of approximately 30,000 mt. In February, both supply and demand contracted simultaneously, and the market is expected to show a tight balance or minor destocking. The current high industry inventory still requires time to be digested, and the sustainability of destocking remains a key variable affecting price trends and market sentiment.
18 hours ago
A plant in northern China is calling for bids for indium ingots and bismuth ingots
22 hours ago
A plant in northern China is calling for bids for indium ingots and bismuth ingots
Read More
A plant in northern China is calling for bids for indium ingots and bismuth ingots
A plant in northern China is calling for bids for indium ingots and bismuth ingots
SMM, February 6 - According to SMM’s investigation of market information, a large smelter in northern China began public bidding for a certain quantity of indium ingots and bismuth ingots starting yesterday. Market sources indicate that the starting price for these indium ingots exceeds 4,000 yuan per kilogram, while the starting price for bismuth ingots is above 150,000 yuan per ton. The bidding results are expected to be announced before the Spring Festival. Market participants note that, given the clear trend of sluggish trading activity ahead of the Spring Festival, the timing of this bidding is not ideal. However, the relatively favorable starting prices have generated considerable market anticipation for the outcome of the bidding.
22 hours ago
[SMM Analysis] Futures Lack Momentum to Rise Further, Pre-Holiday Demand Stalls, and Stainless Steel Social Inventory Accumulation Intensifies
Feb 5, 2026 19:18
[SMM Analysis] Futures Lack Momentum to Rise Further, Pre-Holiday Demand Stalls, and Stainless Steel Social Inventory Accumulation Intensifies
Read More
[SMM Analysis] Futures Lack Momentum to Rise Further, Pre-Holiday Demand Stalls, and Stainless Steel Social Inventory Accumulation Intensifies
[SMM Analysis] Futures Lack Momentum to Rise Further, Pre-Holiday Demand Stalls, and Stainless Steel Social Inventory Accumulation Intensifies
Feb 5, 2026 19:18